- · Where does the data come from? Minimal assumptions.
- · Dataset sizes environous, only growing. Nex-lines time?

Continuous 2 lyos

- What kind of tools are useful for modern algo design? MT: Minimize Structured disjectives. leg. Minimax (stochastic optimization Semidefhile programming ("matrix UP") Structured nonconvex problems (Sporty, GLM, ...) SAMP : Sample from structured densities. l.g. loguentore sampling (basic tractoble family) structured nultimodal problems NILA: numerical lines algebras primitives R.G. precorditoring (solutions lines systems, repression)
 - 5. preconditioning (solving lines systems, regression, Sporsticition (revised data will representatives)

- 2014: Google Intonship. Not good at it...
- 2015: Complexity research. Not good at it ...
- 2016: Genomics research. Really fun! (likes shos best ...
- 2017: (renomics/NLP/Stats research. (Ph.D. rotations)
- 7018: Approximate maxillan.
- 20(9: Nach equilibria, optimal trasport, SDP.
- 2010: Sampling. SOTA for some lograndere families.
- 2021: Robust Stats. P(A, regression, clustering in new-liver time.
- 2022-24: PNDCY, interpretability, etc. 1 Jan trying to learn more about more ML...

time House polythic hot polytime

God in FGC: Web of reductions, Common source of hardness must attack first!

(computational geometers Galientaan - Overmors 195
kick off field of FGC by nearcars to 3-SUM.
(Example : Collinearity requires
$$\approx n^2$$
 time.
Imput: N points in (R². \exists three on a line?
(This proof is UBEY.) Reduce 3-SUM to collinearity.
(head collineary ($\{(x_1, x^3) \mid x \in L_3\})$
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)
(head collinearity ($\{(x_1, x^3) \mid x \in L_3\}$)

What if we can only use more "baseline" techniques?

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

So, S-SAT does not need
$$2^n$$
 time.
More general: K-SAT in $2^n (1-o(t_0))$ in time.
But we need tight base (will later choose $n = log$)
base becomes expand.

OV implies FGC of so many problems:

- · Dismeter · Got distance · Lous alimnent
- · Dynamic resclushility · Frédet distance · Stable martching
- Single-source max flow LCS (lose st pair

2-OV problem:
let
$$d = w(log(n))$$
 "sparse subset"
A, B < $\{0, 1\}^d$, size h
 $\exists \partial \in A, b \in B$ st. $\partial Tb = 0$?
 $def d = b \in B$ st. $\partial Tb = 0$?
 $def d = b \in B$ st. $\partial Tb = 0$?
 $def d = b \in B$ st. $\partial Tb = 0$?
 $def d = 0$?
 $def d = 0$
 $def d = 0$?
 $def d = 0$?

Obs 1: 2-OV is very fundamental. FGC!
Obs 2: 2-OV 2 3-OV 2... 2 K-OV.
Obs 3: "OV 7 SETH".
Suppose there's K-OV in
$$O(N^{KU-s)})$$
.
Take K-SAT formula Φ , n Variables
M Clauses
(reste $A_{1,...,A_{K}} \subset \{0113^{M}:$
 $\chi \in \{013^{N} \rightarrow (x, 1 \times 2 1... 1 \times k))$
 $N/k N/k blocks$
 $A_{i} = index by N = 2^{n/k} assignments to its block$